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Abstract

Depleted uranium (U) from fuel enrichment processes has a variety of applications due to its high density. With the addition of a
small concentration of niobium (Nb), U becomes stainless. Nb is fully miscible with the high-temperature c phase of U and tends to
segregate upon cooling below 1050 K. The starting point of segregation is the configuration of Nb substitutional or interstitial defects.
Using quantum mechanical calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution
0.59 eV, that of Nb interstitial at octahedral site 1.58 eV, and that of Nb interstitial at tetrahedral site 2.35 eV in the dilute limit of
isolated defects; all with reference to a reservoir of the pure c phase U and pure Nb. The analysis of electronic structures reveals the
correlation of formation energies of Nb defects with the local perturbations of electron distribution. Higher formation energy of Nb
defects correlates with larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in
the c phase U.
� 2007 Elsevier B.V. All rights reserved.

PACS: 61.72.Ji; 61.66.Dk
1. Introduction

Uranium (U) is known to exist in three solid phases: a, b
and c [1,2]. Even in the nuclear materials community, U is
relatively less commonly investigated and literature on U is
relatively rarer. We therefore will first briefly describe the
atomic arrangements in these three phases; as shown in
Fig. 1. The a phase has an orthorhombic structure, and
its conventional unit cell contains four atoms, as in face-
centered-cubic (fcc) crystals Fig. 1(a). However, the atoms
at sites J and K are not at face centers although they are on
front and back faces. Further, there are no atoms on the
left and right faces; instead, one effective atom, labeled L,
resides inside the unit cell [3]. The crystal structure of b
(Fig. 1(b)) and c (Fig. 1(c)) phases are body-centered-
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tetragonal (bct) and body-centered-cubic (bcc), respec-
tively. The bct structure is deformed bcc, so the periodicity
along vertical direction is different from those along the
horizontal directions. Under ambient pressure, the a, b
and c phases are stable at 0–940 K, 940–1050 K and
1050–1407 K, respectively [1].

Depleted U containing little 235U may be the by-product
of enrichment or from spent fuels of fission reactors. Such
depleted U has found a variety of applications. With a den-
sity of 19 kg/m3, U is 70% denser than lead and slightly less
dense than tungsten [4]. Because of the high density, bullets
or projectiles made of U can be small in size; one advantage
of the smallness is the reduction of aerodynamic drag. For
the same reason, tank armors made of U are resistant to
projectiles [5]. In the form of pure solid, U is prone to oxi-
dation. The addition of small amount of Nb significantly
improves its corrosion resistance, allowing the production
of ‘stainless’ U. Together with Zr, the addition of Nb to
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Fig. 1. Crystal structures of (a) a, (b) b, and (c) c phases, with U atoms
shown as spheres and directions shown by Miller indices. The a, b, c and y

are lattice constants, and atomic labels (such as P and M) are for reference
later on.
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U also stabilizes the c phase at low temperature [6] for
applications as metallic fuel [7,8]. Due to the low solubility
of Nb in a and b phases of U, Nb is introduced to the high-
temperature c phase [9,10]. This paper examines where Nb
atoms sit as they are introduced into the high-temperature
c phase.

Density functional theory based quantum mechanical
calculations offer a reliable tool to investigate Nb defects
in U. For small simulation cells, appropriate for perfect
crystal calculations, full-potential all-electron calculations
lead to reliable results of lattice constants [11,12], elastic
constants [13], charge density wave (CDW) [14], and high
temperature and high pressure phase diagram [2]. Once
defects are involved, large simulation cells are necessary
and the calculations are based on pseudopotentials. Such
calculations of point defects in uranium oxide [15] and ura-
nium nitride [16] have proven reliable in terms of lattice
constants of perfect crystal and defects formation energies.

Using the same pseudopotential of Ref. [16], this paper
investigates Nb defects in c phase of U. In Section 2, we
describe the computational details. Section 3 has two
components. In the first component, we report relative
stabilities and electronic structures of a, b, and c phases
of U. In the second component, we report formation ener-
gies and electronic structures near a vacancy, an Nb substi-
tutional or an interstitial defect in c phase of U. Finally, in
Section 4 we summarize the conclusions.
2. Computational method

Within the framework of density functional theory, we
perform all the calculations with plane-wave bases using
the projector augmented wave (PAW) method, as imple-
mented in Vienna ab initio simulations package (VASP)
[17,18]. The standard PAW potentials in VASP include
6s26p65f36d17s2 valence electrons for U and 4p65s14d4

for Nb. The partial densities of state, which are based
on Mulliken population analysis [19], show that inclusion
of these valence electrons is sufficient. We use GGA
descriptions for exchange-correlation [20] and set the cut-
off energy in plane-wave basis expansion as 350 eV for
both U and Nb. Use of a larger cutoff of 400 eV leads
to variation of vacancy formation energy within 0.02 eV
and that of elastic constant within 0.3%. We use
Methfessel and Paxton’s Fermi-level smearing method
(width = 0.2 eV) to accelerate electronic structure relaxa-
tion [21]. Using perfect crystals as test cases, we show that
exclusion of spin–orbit interactions causes a negligible
error, at least for b and c phases. Therefore, calculations
involving defects do not include spin–orbit interactions,
for better computational efficiency. All the geometric
relaxations follow a quasi-Newton algorithm using the
exact Hellmann–Feynman forces, with a convergence cri-
terion of force being 0. 1 eV/nm.

In determining the equilibrium structures of pure U, we
use the primitive cell with periodic boundary conditions.
The k-point meshes are 20 � 20 � 26, 24 � 24 � 22, and
26 � 26 � 26 for a, b and c phases, respectively. For the
perfect crystal of bcc Nb, we also use the primitive cell with
periodic boundary conditions, and use k-point mesh of and
26 � 26 � 26. When the mesh density increases up to
30 � 30 � 30 for all the four cases, the energy variations
are within 1 meV/atom. For the a and b phases, which
have internal freedom in the primitive unit cells, cell shape
and ion positions also relax. The starting configuration of
the cell shape and internal freedom is based on experimen-
tal values [3]. In rigorous calculations, an elastic constant
should be the curvature near equilibrium lattice constants
[22]. However, in order to compare with existing quantum
mechanical calculation and experimental data of bulk
modulus and its pressure derivative, we adopt the third-
order Birch–Murnaghan equation of state [23]. The varia-
tion of bulk modulus from these two calculation methods
is within 1%.

In the study of defects in the c phase of U, we use larger
simulation cells with periodic boundary condition. Three
types of defect configurations are: single vacancy, Nb at
substitutional site, and Nb at interstitial site. The size of
simulation cell (which is also called supercell) is 3 � 3 � 3
in the unit of bulk lattice constant a; the cell contains 54
lattice sites. Use of larger cell of 4 � 4 � 4 containing 128
lattice sites leads to variation of vacancy formation energy
within 0.05 eV. The k-point meshes are 6 � 6 � 6, and
other parameters are the same as for pure U calculations.
When the k-point mesh density increases up to 8 � 8 � 8,
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the variation of vacancy formation energy is within
0.01 eV.

Turning to defect formation energies, we consider the
dilute limit of isolated defects. As a reference point, the
energy of each isolated atom at ground state is zero. The
formation energy of a single vacancy Ev is defined as

Ev ¼ Eðn�1ÞU �
ðn� 1Þ

n
EnU; ð1Þ

where E(n � 1)U is the total energy of (n � 1)U atoms in a
simulation cell of n lattice sites, and EnU is the total energy
of a perfect U cell containing nU atoms; the empty lattice
site represents a vacancy. The formation energy of an Nb
substitutional defect Es is defined as

Es ¼ Eðn�1ÞUþNb �
ðn� 1Þ

n
EnU � ENb; ð2Þ

where E(n�1)U+Nb is the total energy of (n � 1)U atoms and
one Nb atoms occupying the n lattice sites of a simulation
cell, and ENb is the total energy of each Nb in a perfect bcc
crystal. The formation energy of Nb interstitial defect EI is
defined as

EI ¼ EnUþNb � EnU � ENb; ð3Þ

where EnU+Nb is the total energy of nU atoms occupying
the n lattice sites and one Nb atom occupying an interstitial
site of a simulation cell. To facilitate comparison of the
calculation results with their experimental counterpart,
Fig. 2. Total energy versus atomic volume for a, b and c phases of U; with
or without spin–orbit (SO) interactions.

Table 1
Properties of the a phase: Atomic volume V in unit of nm3, lattice constants (a
derivative B0

V0 (�10�3) a b

PAW + w (this work) 20.7484 0.28318 0.59
PAW + wt (this work) 20.1012 0.28014 0.58
FPLAPW [24] 20.38 N/A N/A
FPLMTO [3] 20.67 0.2845 0.58
Experiments [2,3] 20.5815 0.28444 0.58
we note that the definition here assumes pure bcc Nb and
pure c phase of U as sources and sinks in defect formation.
3. Results

In this section, we start from results of pure U, and pro-
ceed to those of the c phase of U containing a vacancy or
an Nb defect, using the former for comparison and
contrast. In order to test the validity of the computational
method, we first determine the total energy as a function of
atomic volume. From this function, we may derive equilib-
rium lattice constants, bulk moduli, and their derivatives
with respect to pressure for the a, b and c phases. Shown
in Fig. 2 is the total energy as a function of atomic volume,
with and without spin–orbit interactions. Consistent with
experimental observation [1], the a phase is more stable
than the c phase at 0 K. For comparison, Table 1 lists
our results of the a phase with (PAW+w) and without
(PAW+wt) spin–orbit interactions and literature data.
The data include available experimental measurements
[2,3] and two versions of full-potential-based (FP) calcula-
tion results with spin–orbit interactions; one using linear
muffin-tin orbital (LMTO) [13] and the other using linear
augmented plane wave (LAPW) [24]. The experimental
measurements of lattice constants are at 4 K, and the mod-
ulus at room temperature. The lattice constants from our
calculations with spin–orbit interactions are in agreement
with experimental values within about 1%. Our results of
lattice constants are also comparable to other quantum
mechanical calculation results by similar margin, and elas-
tic constants by about 7% [13]. These comparisons indicate
that the general method used here is reasonable.

Fig. 2 also reveals another interesting feature, relevant
to spin–orbit interactions. With or without spin–orbit
interactions, the energy dependence on atomic volume
remains almost the same for bother b and c phases. When
it comes to the c phase, which is the focus of this study, our
calculations without spin–orbit interactions show that the
bulk modulus is 122.6 GPa and its pressure derivative is
4.1; these compare well with the experimental values of
113.3 GPa and 3.4 [2]. These results show that the PAW
and GGA together can reproduce the experimental results
for pure U, without spin–orbit interactions.

Beyond the energy–volume relationships, electron distri-
butions provide further insights to atomic bonding in U.
As the density of state (DOS) in Fig. 3 shows, the 6s and
, b, c, and y) in unit of nm, bulk modulus B in unit of GPa and its pressure

c y B B0

403 0.49337 0.00971 142.3 5.0
821 0.48795 0.00972 142.5 5.0

N/A N/A 149 N/A
18 0.4996 0.01025 133.0 5.4
689 0.49316 0.010242 135.5 3.8
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6p electrons in the a phase are relatively deep into the core
and not valence electrons; this is also true for b and c
phases. This distribution indicates that inclusion up to 6s
and 6p electrons, as the default of the PAW potential in
the VASP package, is sufficient. Among all electrons, the
f-electrons dominate near the Fermi energy EF. The domi-
nance of f-electrons applies to all the three phases (a, b and
c), as shown in Fig. 4.
Fig. 3. Partial and total densities of state (DOS) in the equilibrium a
phase as a function of energy E; based on calculations without spin–orbit
interactions. Labeled are 5f, 6s, 6p, 6d, and 7s electrons and the Fermi
energy EF.

Fig. 4. Partial and total densities of state (DOS) in (a) a, (b) b, and (c) c
phases as a function of energy E; based on calculations without spin–orbit
interactions. Labeled are 5f, 6s, 6p, 6d, and 7s electrons and the Fermi
energy EF.
From the distribution of electrons in energy space (that
is DOS), we now turn to the distribution in real space. For
clear visualization, we use contours of electron density dif-
ference (EDD). The difference is between the self-consistent
electron density of the crystal, with or without defect, and
the total electron density from all neutral atoms, as in [25].
Focusing on electron distribution between nearest neigh-
bors, we plot the contours on representative high-symme-
try and high-atom-density planes. In all cases, 10 zones
of density difference are shown. The lightest (green for
color online) zone corresponds 50 e/nm3 or larger, and
the darkest (blue for color online) –350 e/nm3 or smaller.
The other eight zones are between 50 e/nm3 and �350
e/nm3 with equal spacing of 50 e/nm3. Solid lines delineate
the boundaries of these zones.

Shown in Fig. 5 are EDD contours of the a, b and c
phases of U crystal. In the a phase, there is a substantial
increase of electron density, relative to the total electron
density from all neutral atoms, between two nearest neigh-
bors G and J (or F and J); Fig. 5(a). This shows that there
is strong orientation-dependent bonding between G and J.
In contrast, the increase of electron density between nearest
neighbors H and L is much less prominent, and the overall
variation of electron density is more isotropic in the c
phase; Fig. 5(c). The variation of electron density in the b
phases is in between those in the a and c phases. The highly
anisotropic variation of electron density in the a phase cor-
relates with its low symmetry of crystal structure. For ref-
erence in presenting the electronic structure around Nb
interstitial, we have also included the electron distribution
on {100} plane; Fig. 5(d).

Having established the electron distribution in a per-
fect U crystal, we now turn to the focus of this study:
defects in the c phase of U. First, we examine an intrinsic
defect – single vacancy – in this phase. Our calculations
show that the formation energy a single vacancy in the
c phase of U is 1.08 eV. At the melting temperature of
1407 K, the fractional concentration of vacancy e�1.08/kT

is close to 10�4; here kT is the Boltzmann factor. This
concentration is comparable to that of typical metals such
as Cu and Al [26]. As expected, electron density near the
vacancy decreases, relative to the total electron density
from all neutral atoms; Fig. 6. The first nearest neighbors
(such as H) relax toward the vacancy by 0.0181 nm,
while the second nearest neighbors (such as D) relax out-
ward by 0.0100 nm. As a result of the relaxation, the elec-
tron density along one close-packed direction (such as
HC) decreases, and that along another (such as HD)
changes little; all relative to that in perfect crystal,
Fig. 5(c).

Before presenting Nb defects in the c phase of U, we first
present the results of a perfect crystal of bcc Nb. In a
relaxed perfect crystal at 0 K and zero pressure, the total
energy of Nb is �10.062 eV/atom. The corresponding lat-
tice constant of the bcc structure is 0.3324 nm, which com-
pares well with the experimental value [4] of 0.33 nm at
room temperature and atmosphere pressure. This lattice



Fig. 5. Contours of electron density difference (EDD) on a (a) {110} in the a (b) {110} in the b (c) {110} in the c, and (d) {100} in the c phase.

Fig. 6. Contours of electron density difference (EDD) on a {110} in the c
phase, with a vacancy in the middle.

Fig. 7. Atomic configurations near (a) a tetrahedral (T) and (b) an
octahedral (O) interstitial site in the c phase of U.

S. Xiang et al. / Journal of Nuclear Materials 375 (2008) 113–119 117
constant is only a little smaller than the one of the bcc U
(0.3434 nm).

In terms of Nb defects in the c phase of U, we consider
three possibilities: Nb substitution, Nb interstitial at a tet-
rahedral site, and Nb interstitial at an octahedral site. The
tetrahedral (T) and the octahedral (O) sites are shown in
Fig. 7; labels of lattice sites follow the same notations of
Fig. 1. The tetrahedral site T is at the center of a tetrahe-
dron EFMN, as shown in Fig. 7(a); on the {001} plane
PEFQ, it is equal distant to points E and F, and also equal
distant to point O and line EF. The octahedral site O is at
the center of an octahedron EFMNPQ; it is also at the
center of a {001} plane PEFQ and the center of {11 0}
plane FMNP, as shown in Fig. 7(b). Our calculations show
that the formation energy of an Nb substitution is 0.59 eV,
that of Nb interstitial at the tetrahedral site 1.58 eV, and
that of Nb interstitial at the octahedral site 2.35 eV. The
energies correlate with the perturbations of electron density
upon the formation of Nb defects.
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As shown in Fig. 8, the perturbation to electron distri-
bution increases in the order of Nb substitution, Nb inter-
stitial at tetrahedral site, and Nb interstitial at octahedral
site; relative to those in perfect crystal, Figs. 5(c) and (d).
This trend is also consistent with the magnitude of ion dis-
placements around these three defects. Near an Nb substi-
tution, its first nearest neighbors (such as H) relax outward
by 0.0049 nm, and its second nearest neighbors (such as D)
relax inward by 0.0046 nm. Near an Nb interstitial at tetra-
hedral site, its first nearest neighbors (such as E) relax out-
Fig. 8. Contours of electron density difference (EDD) on a (a) {110} in
the c phase of U containing a substitution Nb atom, (b) {110} in the c
phase of U containing an interstitial Nb atom at tetrahedral site, and (c)
{100} in the c phase of U containing an interstitial Nb atom at octahedral
site.
ward by 0.0368 nm, and its second nearest neighbors (not
shown in Fig. 8(b)) relax outward by 0.0269 nm. Near an
Nb interstitial at octahedral site, its first nearest neighbors
(such as M) relax outward by 0.0843 nm, and its second
nearest neighbors (such as P) relax outward by 0.0369 nm.

4. Conclusions

In summary, we have investigated the three phases of U
perfect crystals, and defects in the c phase of U. Our calcu-
lations show: (1) f-electrons dominate the population near
the Fermi energy of all phases of U perfect crystal; (2) for-
mation energies of single vacancy, Nb substitution, Nb
interstitial at tetrahedral site, and Nb interstitial at octahe-
dral site in the c phase of U are 1.08 eV, 0.59 eV, 1.58 eV,
and 2.35 eV, respectively; (3) electron density distribution
changes less near a substitutional Nb than near an intersti-
tial Nb atom, and such changes correlates with variations
of formation energies. Based on the formation energies,
the thermodynamically preferable site of Nb in the c phase
U is the substitutional site.
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